Neuronal deletion of Lepr elicits diabesity in mice without affecting cold tolerance or fertility.
نویسندگان
چکیده
Leptin signaling in the brain regulates energy intake and expenditure. To test the degree of functional neuronal leptin signaling required for the maintenance of body composition, fertility, and cold tolerance, transgenic mice expressing Cre in neurons (CaMKIIalpha-Cre) were crossed to mice carrying a floxed leptin receptor (Lepr) allele to generate mice with neuron-specific deletion of Lepr in approximately 50% (C F/F mice) and approximately 75% (C Delta17/F mice) of hypothalamic neurons. Leptin receptor (LEPR)-deficient mice (Delta17/Delta17) with heat-shock-Cre-mediated global Lepr deletion served as obese controls. At 16 wk, male C F/F, C Delta17/F, and Delta17/Delta17 mice were 13.2 (P < 0.05), 45.0, and 55.9% (P < 0.001) heavier, respectively, than lean controls, whereas females showed 31.6, 68.8, and 160.7% increases in body mass (P < 0.001). Significant increases in total fat mass (C F/F: P < 0.01; C Delta17/F and Delta17/Delta17:P < 0.001 vs. sex-matched, lean controls), and serum leptin concentrations (P < 0.001 vs. controls) were present in proportion to Lepr deletion. Male C Delta17/F mice had significant elevations in basal serum insulin concentrations (P < 0.001 vs. controls) and were glucose intolerant, as measured by glucose tolerance test (AUC P < 0.01 vs. controls). In contrast with previous observations in mice null for LEPR signaling, C F/F and C Delta17/F mice were fertile and cold tolerant. These findings support the hypothesis that body weight, adiposity, serum leptin concentrations, and glucose intolerance are proportional to hypothalamic LEPR deficiency. However, fertility and cold tolerance remain intact unless hypothalamic LEPR deficiency is complete.
منابع مشابه
Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes.
We have generated mice that carry a neuron-specific leptin receptor (LEPR) transgene whose expression is driven by the rat synapsin I promoter synapsin-LEPR B (SYN-LEPR-B). We have also generated mice that are compound hemizygotes for the transgenes SYN-LEPR-B and neuron-specific enolase-LEPR B (NSE-LEPR-B). We observed a degree of correction in db/db mice that are hemizygous (Syn db/db) and ho...
متن کاملTransgenic complementation of leptin-receptor deficiency. I. Rescue of the obesity/diabetes phenotype of LEPR-null mice expressing a LEPR-B transgene.
Mice homozygous for the Leprdb3J (db3J) mutation are null for all known isoforms of the leptin receptor (LEPR). These animals are obese, hyperphagic, cold intolerant, insulin resistant, and infertile. Mice homozygous for the Leprdb (db) mutation (lacking the B isoform only) have the same phenotype as db3J animals. To better understand the function(s) of the LEPR isoforms in vivo, we generated d...
متن کاملLeptin receptor null mice with reexpression of LepR in GnRHR expressing cells display elevated FSH levels but remain in a prepubertal state.
Leptin signals energy sufficiency to the reproductive hypothalamic-pituitary-gonadal (HPG) axis. Studies using genetic models have demonstrated that hypothalamic neurons are major players mediating these effects. Leptin receptor (LepR) is also expressed in the pituitary gland and in the gonads, but the physiological effects of leptin in these sites are still unclear. Female mice with selective ...
متن کاملLeptin Signaling in Kiss1 Neurons Arises after Pubertal Development
The adipocyte-derived hormone leptin is required for normal pubertal maturation in mice and humans and, therefore, leptin has been recognized as a crucial metabolic cue linking energy stores and the onset of puberty. Several lines of evidence have suggested that leptin acts via kisspeptin expressing neurons of the arcuate nucleus to exert its effects. Using conditional knockout mice, we have pr...
متن کاملIRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action.
Irs2-mediated insulin/IGF1 signaling in the CNS modulates energy balance and glucose homeostasis; however, the site for Irs2 function is unknown. The hormone leptin mediates energy balance by acting on leptin receptor (LepR-b)-expressing neurons. To determine whether LepR-b neurons mediate the metabolic actions of Irs2 in the brain, we utilized Lepr(cre) together with Irs2(L/L) to ablate Irs2 e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 289 3 شماره
صفحات -
تاریخ انتشار 2005